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Abstract

The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety 

and Health (NIOSH) recently developed a series of models using computational fluid dynamics 

(CFD) to study airflows and respirable dust distribution associated with a medium-sized surface 

blasthole drill shroud with a dry dust collector system. Previously run experiments conducted in 

NIOSH’s full-scale drill shroud laboratory were used to validate the models. The setup values in 

the CFD models were calculated from experimental data obtained from the drill shroud laboratory 

and measurements of test material particle size. Subsequent simulation results were compared with 

the experimental data for several test scenarios, including 0.14 m3/s (300 cfm) and 0.24 m3/s (500 

cfm) bailing airflow with 2:1, 3:1 and 4:1 dust collector-to-bailing airflow ratios. For the 2:1 and 

3:1 ratios, the calculated dust concentrations from the CFD models were within the 95 percent 

confidence intervals of the experimental data. This paper describes the methodology used to 

develop the CFD models, to calculate the model input and to validate the models based on the 

experimental data. Problem regions were identified and revealed by the study. The simulation 

results could be used for future development of dust control methods for a surface mine blasthole 

drill shroud.

Introduction

In surface mines, production drilling is an essential process in blasting to fracture the hard 

rock overburden for removal. During the process, considerable amounts of respirable dust 

are produced. Past sampling at the shroud area of blasthole drills had documented time-

weighted-average respirable dust concentrations ranging from 8.68 to 95.15 mg/m3 

(Organiscak and Page, 1995) and 1.04 to 52.30 mg/m3 (Listak and Reed, 2007). These high 

dust concentrations, which may contain silica, can lead to respirable dust overexposures for 
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the miners working nearby. These overexposures can lead to silicosis, an occupational lung 

disease that has no cure and is ultimately fatal.

Two basic methods are used to control drilling dust: a wet suppression system or a dry 

collection system (Cecala et al., 2012). Dry drilling techniques using a dust collection 

system are preferred in rural mining locations where a constant water supply is not available, 

and in the case of rotary drilling where water is associated with accelerated bit wear due to 

bearing degradation and hydrogen embrittlement. In addition, dry drilling eliminates 

freezing-related issues with water in colder climates. Dry dust collectors are highly effective 

at removing dust, especially the finer material, as long as they are properly operated and 

maintained (Listak and Reed, 2007; Organiscak and Page, 2005).

In order to understand the respirable dust behaviors around the drill and evaluate the 

effectiveness of various control techniques, computational fluid dynamic (CFD) simulations 

can be applied to different scenarios. The focus of this study was on a typical drill deck 

shroud area of a medium-sized blasthole drill, such as a Sandvik D45KS or Atlas Copco 

DM45, using a dry dust collection system. The computer model was constructed based upon 

the existing drill deck/shroud simulator of the U.S. National Institute for Occupational 

Safety and Health (NIOSH). Using information that simulated laboratory test inputs, the 

CFD model was then validated using two specific data sets from collector-to-bailing airflow 

ratio experiments conducted in this simulator.

CFD modeling

The ANSYS Fluent Version 15.0 CFD software was used to analyze the airflow and dust 

distribution in this study. The schematic of the drill table simulator was built according to 

the geometry measured from the NIOSH full-size facility (Fig. 1) that is fully described in 

Page, Reed and Listak (2008), Potts and Reed (2008) and Reed and Potts (2010).

To provide airflow in the domain, three major inlet/outlet boundaries were applied (Fig. 1), 

with no-slip walls with zero heat and diffusive flux as the other boundaries:

• Bailing air inlet: Bailing air with dust is injected into the simulation 

domain from a circular face inside the hollow drill pipe.

• Roof flow inlet: Fresh airflow is pulled into the simulation domain by the 

dust collector from the openings in the roof. This intake airflow 

compensates for the difference of airflow between the dust collector 

airflow and the bailing airflow.

• Dust collector outlet: Airflow through this outlet is the sum of the bailing 

and roof airflows. The boundary condition applied is a pressure outlet with 

0 Pa (0 psi) gage pressure.

To simplify the CFD model processing, four assumptions are made for the drill shrouds 

model: (1) the airflow is incompressible, (2) the temperature is constant, (3) the airflow in 

the domain is fully turbulent and (4) only the leakage at the ground-to-shroud gap is 

considered.
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Both the discrete phase model and species transport model within ANSYS Fluent were 

evaluated for the drill shroud dust study and compared with the experimental data. In the 

discrete phase model, dust is treated as a secondary discrete phase (particle) and in the 

species transport model, dust is considered as a continuous phase (gas). Similar dust 

distribution patterns can be obtained from both models, but the species transport model is 

computationally faster, requiring 67 percent less time, and provides smoother concentration 

results at the sampling points, so it is preferred for modeling dust distribution. Carbon 

dioxide gas was used to represent dust. The CFD software uses the steady-state Navier-

Stokes equations, continuity equations and conservation of energy equations as the basic 

equations to resolve computer models. Turbulence was modeled using the realizable K-

epsilon turbulence model with enhanced wall treatment.

Experimental data and simulation setups

To use CFD to reveal respirable dust behavior, validation assessment is necessary. CFD 

results have to be authenticated with actual observations to produce valid results. In this 

study, the CFD model was authenticated with data from a controlled experiment conducted 

in NIOSH’s full-scale drill table simulator.

Table 1 shows the two sets of experimental data used. The bailing airflow was 0.14 m3/s 

(300 cfm) in case 1 and 0.24 m3/s (500 cfm) in case 2. Both cases had laboratory dust 

concentration data for 2:1, 3:1 and 4:1 collector-to-bailing airflow ratios and a 5.1-cm (2-in.) 

ground-to-shroud gap (Page and Organiscak, 2004; Page, Reed and Listak, 2008). For each 

test condition, three or four tests were repeated, and the averaged values were used to 

calculate the CFD inputs.

The averaged dust feed rate shown in Table 1 cannot be used directly as it is total dust, 

containing the entire particle size distribution from 0.1 to 300 μm. Only the respirable 

portion was collected during the experiments, using a 10-mm Dorr-Oliver cyclone and 37-

mm filter cassette operated at a flow rate of 2.0 L/min. Therefore, the material was analyzed 

for its particle size distribution, showing 21.7 percent passing 4.0 μm, which represents 

respirable dust (Reed, 2011).

Based on the experimental data from Table 1, six simulations were carried out for the bailing 

airflows of 0.14 m3/s (300 cfm) and 0.24 m3/s (500 cfm) and collector-to-bailing airflow 

ratios of 2:1, 3:1 and 4:1. The values needed for simulation include the bailing airflow 

velocity, roof airflow velocity, dust collector flow rate and respirable dust mass fraction.

Example of calculation of input parameters—The input parameters for all six 

simulations were calculated in the same way using the experimental data in Table 1, 

illustrated here with the case of 0.14 m3/s (300 cfm) bailing air and 2:1 ratio.

Known values were average bailing airflow = 0.17 m3/s = 10.39 m3/min (367 cfm), area of 

bailing airflow outlet, measured from the laboratory facility = 0.02137 m2, average collector 

airflow = 0.33 m3/s = 20.02 m3/min (707 cfm), average roof airflow = 0.16 m3/s = 9.66 

m3/min (341 cfm), area of roof airflow inlet, measured from the laboratory facility = 0.9754 

m2, air density at 25 °C (298.16 K) = 1.184 kg/m3 and dust mass feed rate = 6.6 g/min.
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The bailing airflow velocity and roof airflow velocity were simply calculated based upon 

quantity equals velocity multiplied by area. The dust concentration needed to be converted 

to mass fraction of dust in the air, as in the following:

Calculating the respirable dust mass fraction to input into the model allows for modeling of 

respirable dust, but the mass fraction of respirable dust calculated above does not account for 

the collection efficiency of the sampling cyclone. The Dorr-Oliver cyclone’s collection 

efficiency varies with particle size, following the ACGIH/CEN/ISO curve for sampling 

efficiency criteria for respirable dust (Gautam and Sreenath, 1997; Gorner et al., 2001; 

Soderholm, 1989). The curve specifies an approximately 50 percent overall sampling 

efficiency for particles 4 μm in size, close to 100 percent efficiency for particles smaller than 

1 μm, and very low efficiency for particles larger than 10 μm (ACGIH, 1994–1995; Comite 

Europeen de Normalisation, 1992; International Organization for Standardization, 1995). 

Therefore, to account for the collection efficiency of the Dorr-Oliver cyclone, the respirable 

mass fraction must include a correction for cyclone efficiency:

Validation by comparing simulations with laboratory experimental results

Table 2 shows the input parameters for the simulations run for the validation study.

The CFD dust concentration used for comparison was the average of the results from the 

four sampler locations shown in Fig. 1. These CFD concentrations were compared with the 

averaged experimental dust data from Table 1 at the same locations. Since three or four 

experimental trials were conducted for each case, each of which produced different dust 

concentration results, the modeled concentrations were compared with the average 

experimental concentrations with their 95 percent confidence intervals. If the modeled 

results were within the experimental 95 percent confidence interval, they were considered 

acceptable.

Table 3 presents the results showing the comparison. The CFD dust concentrations are 

within the 95 percent confidence intervals of the laboratory experimental dust concentrations 

for the 2:1 and 3:1 collector-to-bailing air ratios, validating the model results.

The CFD results for the 4:1 simulation, however, are 0.00 mg/m3 and not within the 95 

percent confidence intervals of the laboratory experimental data. A possible reason for the 

4:1 concentrations being higher in the laboratory is dust contamination on the interior 
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facility walls. While the facility was cleaned periodically — approximately weekly — 

during the series of tests, there was still dust contamination on the interior walls that could 

result in elevated laboratory dust concentrations. Airflow turbulence within the facility could 

have re-entrained any wall particles, which is not characterized in the CFD model. This, 

combined with the fact that both experimental and simulation data showed progressively 

lower dust levels with increasing ratios, indicates the model may be valid throughout the 

studied range. Most importantly, the model is valid at a ratio of 2:1, which is typically 

encountered in the field (Page, Reed and Listak, 2008).

Characteristics of airflow and dust underneath the drill shroud

To portray the shroud airflow velocity vectors and dust concentration contours, cross-

sectional plots were developed based upon the orientations of the planes seen in Fig. 1. Two 

vertical planes, 1 and 2, create cross sections cutting through the shroud. They are 

perpendicular to each other and to the y- and x-axes, respectively. Each plane has a common 

line of the drill pipe axis. A third cross-sectional plane, plane H, is a horizontal plane located 

in the middle of the shroud-to-ground gap, 2.54 cm (1 in.) above the ground surface.

Airflow behavior

Figure 2 shows the the velocity vectors inside the drill table simulator for 0.24 m3/s (500 

cfm) airflow. Because the velocity vector plots for 0.14 m3/s (300 cfm) and 0.24 m3/s (500 

cfm) were similar, only the 0.24 m3/s (500 cfm) plot is shown. As the bailing air exits the 

gap between drill stem and drillhole, the upward flow follows along the drill stem to the 

underside of the table, where it fans out across the bottom of the drill table and continues 

down the sides of the shroud. This is due to the Coanda effect, under which the airflow tends 

to attach to nearby surfaces (Trancossi, 2011). This bailing air then strikes the ground, at 

which point some of it escapes through the gap between the shroud and the ground. This 

phenomena is illustrated in Figs. 3, 4 and 5.

The leakage of airflow from the gap between the shroud and the ground can be clearly 

observed in the velocity vectors in plane H in Fig. 3. At the three corners without the dust 

collector inlet, there are flows that leak out of the shroud table, where the velocity vectors 

are pointing away from the shroud table, providing the potential to emit dust-laden air.

Figure 4 shows the velocity vectors for cross-sectional plane 1. This cross section cuts 

through locations in the shroud-to-ground gap that have strong inward airflows. Due to the 

forceful inward flow, the downward airflow path is interrupted underneath the table. On the 

left side inside the drill shroud, the inward airflow blocks the downward flow preventing it 

from escaping the shroud by redirecting it back into the bailing airflow. The right side 

displays the same airflow paths inside the drill shroud.

Figure 5 shows the velocity vectors for cross-sectional plane 2. This cross section cuts 

through locations in the shroud-to-ground gap that do not have strong inward airflows. Two 

areas of circular airflow are created directly underneath the drill table due to the high 

velocity of bailing airflow. As the downward airflow strikes the ground, part of the flow 

continues its circulation back into the bailing airflow with the rest of the flow leaking out of 
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the shroud. The inward airflow at the shroud-to-ground gap from outside the drill shroud is 

not powerful enough to contain the dust-laden air within the shroud.

As the collector-to-bailing airflow ratio increases from 2:1 to 3:1 and eventually to 4:1, the 

inward flow from the surrounding outside air through the 5.08-cm (2-in.) shroud-to-ground 

gap into the shroud table becomes dominant. Minimal, if any, bailing airflow escapes the 

shroud.

Figure 6 shows the airflow vectors underneath the drill shroud at the 3:1 ratio for cross-

sectional plane 2. On the left side beneath the drill table, the collector draws most of the 

bailing air as it fans out under the table, leaving very little downward airflow. On the right 

side, the effect of the collector is less. The Coanda effect directs the bailing air down along 

the inside of the shroud. At the shroud-to-ground gap, it is then diverted toward the drill pipe 

without escaping the shroud. These strong inward airflow patterns are caused by the 

increased “makeup airflow” required by the dust collector, resulting in no escaping of this 

downward airflow. A similar phenomenon is observed for the 4:1 ratio condition.

Respirable dust behavior

From the review of the velocity vectors, there is still airflow escaping the drill shroud at a 

2:1 collector-to-bailing airflow ratio, the typical operating condition encountered in the field. 

This leakage produces a considerable amount of dust from the shroud.

Figure 7 shows the concentration distributions of the respirable dust above 2 mg/m3 for the 

0.14 m3/s (300 cfm) case with 2:1, 3:1 and 4:1 collector-to-bailing airflow ratios. At a 2:1 

ratio, the entire space inside the drill shroud simulator is engulfed by the respirable dust. The 

leakage is greatly reduced at 3:1 and totally confined at 4:1. Similar dust distributions were 

obtained for the 0.24 m3/s (500 cfm) case with the corresponding collector-to-bailing airflow 

ratios and are therefore not shown.

Discussion

The CFD simulations show that the shroud structure produces a strong Coanda effect in all 

three collector-to-bailing airflow ratio conditions. This effect influences the dust-laden 

bailing airflow such that it attaches to nearby surfaces, follows the route of the drill stem to 

underneath the drill deck where it fans out and flows down the hanging vertical deck shroud 

to the shroud-to-ground gap, where the dusty flow strikes the ground and can escape from 

the gap.

By increasing the collector-to-bailing airflow ratio, the dusty downward airflow is prevented 

from escaping the shroud when striking the ground. At the ideal condition, the 4:1 collector-

to-bailing airflow ratio can effectively prevent almost all dust emissions from the shroud 

(Fig. 7).

At the 2:1 collector-to-bailing airflow ratio that is typically found in actual drilling 

operations, considerable amounts of dust leak at various locations in the drill shroud gap, 

thus reducing the effectiveness of the dust collector. The entire right side of the shroud, 

where the cab of the drill operator is normally located, has the most intensive dust leakage. 
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This has the potential to adversely affect the working conditions of the drill operator if the 

cab is opened or not properly sealed. Overall, the escaped dust can affect the surrounding 

area of the blasthole drill where personnel such as the drill helper and blast crew may be 

working. With this validated study, future simulations can be performed to help investigate 

methods to improve dust exposure from drilling operations.
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Figure 1. 
CFD simulation domain with boundary conditions, samplers’ location and cross-sectional 

planes that display airflow vectors and dust level contours for CFD post-processing.
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Figure 2. 
Velocity distribution inside the drill table simulator, for 0.24 m3/s (500 cfm) with 2:1 

collector-to-bailing airflow ratio (legend from 0 to 26 m/s).
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Figure 3. 
Velocity vectors for cross-sectional plane H, for 0.24 m3/s (500 cfm) with 2:1 collector-to-

bailing airflow ratio (legend from 0 to 26 m/s).
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Figure 4. 
Velocity vectors for cross-sectional plane 1 with a detailed view underneath the table, for 

0.24 m3/s (500 cfm) with 2:1 collector-to-bailing airflow ratio (legend from 0 to 26 m/s).
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Figure 5. 
Velocity vectors for cross-sectional plane 2 with a detailed view underneath the table, for 

0.24 m3/s (500 cfm) with 2:1 collector-to-bailing airflow ratio (legend from 0 to 26 m/s).
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Figure 6. 
Velocity vectors for cross-sectional plane 2 with a detailed view underneath the drill shroud, 

for 0.24 m3/s (500 cfm) with 3:1 collector-to-bailing airflow ratio (legend 0 to 26 m/s).
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Figure 7. 
Respirable dust concentration distributions inside the drill table simulator, for 0.14 m3/s (300 

cfm) with 2:1, 3:1 and 4:1 collector-to-bailing airflow ratios (legend from 2 to 40 mg/m3).
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Table 2

Input parameters for drill shroud dust simulation.

Description Case 1, 0.14 m3/s (300 cfm) parameters Case 2, 0.24 m3/s (500 cfm) parameters

Simulation model. Species transport model. Species transport model.

Turbulence model. k-ε, realizable, enhanced wall condition. k-ε, realizable, enhanced wall condition.

Bailing air inlet (2:1). Velocity = 8.102 m/s; T = 298.16 K. Velocity = 11.438 m/s; T = 298.16 K.

Bailing air inlet (2:1). Dust mass fraction = 5.85 × 10−5. Dust mass fraction = 3.07 × 10−5.

Bailing air inlet (3:1). Velocity = 8.036 m/s; T = 298.16 K. Velocity = 11.327 m/s; T = 298.16 K.

Bailing air inlet (3:1). Dust mass fraction = 5.77 × 10−5. Dust mass fraction = 3.22 × 10−5.

Bailing air inlet (4:1). Velocity = 8.036 m/s; T = 298.16 K. Velocity = 11.394 m/s; T = 298.16 K.

Bailing air inlet (4:1). Dust mass fraction = 5.60 × 10−5. Dust mass fraction = 3.02 × 10−5.

Dust collector outlet (all 
cases). Pressure outlet: 0 Pa gage pressure. Pressure outlet: 0 Pa gage pressure.

Roof flow inlet (2:1). Velocity = 0.165 m/s, T = 298.16 K. Velocity = 0.245 m/s, T = 298.16 K.

Roof flow inlet (2:1). Dust mass fraction = 0. Dust mass fraction = 0.

Roof flow inlet (3:1). Velocity = 0.349 m/s, T = 298.16 K. Velocity = 0.480 m/s, T = 298.16 K.

Roof flow inlet (3:1). Dust mass fraction = 0. Dust mass fraction = 0.

Roof flow inlet (4:1). Velocity = 0.534 m/s, T = 298.16 K. Velocity = 0.714 m/s, T = 298.16 K.

Roof flow inlet (4:1). Dust mass fraction = 0. Dust mass fraction = 0.

Walls. No-slip boundary conditions and adiabatic walls. No-slip boundary conditions and adiabatic walls.

Solution method.
Pressure-velocity coupling scheme: coupled; spatial 
discretization for gradient: Green-Gauss node based; 
others: 2nd order upwind.

Pressure-velocity coupling scheme: coupled; spatial 
discretization for gradient: Green-Gauss node based; 
others: 2nd order upwind.
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Table 3

Comparison of the laboratory experimental dust concentrations with 95 percent confidence intervals and the 

CFD modeled concentrations.

Case 1: 300 cfm 2:1 3:1 4:1

Lab-averaged value, with 95 percent confidence interval (mg/m3). 3.98, 4.56-3.40 0.72, 1.39-0.04 0.30, 0.49-0.11

CFD (mg/m3). 4.07 0.30 0.00

Inside/outside 95 percent CI. Inside. Inside. Outside.

Case 2: 500 cfm 2:1 3:1 4:1

Lab-averaged value, with 95 percent confidence interval (mg/m3). 2.37, 3.35-1.39 0.52, 0.88-0.17 0.10, 0.11-0.09

CFD (mg/m3). 2.46 0.19 0.00

Inside/outside 95 percent CI. Inside. Inside. Outside.
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